TLR8 Antibody (44C143) [Janelia Fluor® 646] Summary
Additional Information |
Clone 44C143 was used by HLDA to establish CD designation. |
Immunogen |
This antibody was developed against a KLH-conjugated synthetic peptide of human TLR8, within amino acids 750-850. |
Isotype |
IgG1 Kappa |
Clonality |
Monoclonal |
Host |
Mouse |
Gene |
TLR8 |
Purity |
Protein G purified |
Innovator's Reward |
Test in a species/application not listed above to receive a full credit towards a future purchase. |
Applications/Dilutions
Dilutions |
- CyTOF-ready
- Dot Blot
- Flow (Cell Surface)
- Flow (Intracellular)
- Flow Cytometry
- Immunocytochemistry/ Immunofluorescence
- Immunohistochemistry
- Immunohistochemistry-Paraffin
- Simple Western
- Western Blot
|
Application Notes |
Optimal dilution of this antibody should be experimentally determined. |
Packaging, Storage & Formulations
Storage |
Store at 4C in the dark. |
Buffer |
50mM Sodium Borate |
Preservative |
0.05% Sodium Azide |
Purity |
Protein G purified |
Notes
Sold under license from the Howard Hughes Medical Institute, Janelia Research Campus.
Alternate Names for TLR8 Antibody (44C143) [Janelia Fluor® 646]
Background
Toll-like receptor 8 (TLR8) is a member of the TLR family of receptors that play a role in innate immune system activation and the recognition of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) (1,2). TLRs are type I membrane receptors that can be expressed on either the cell surface or internally, on endosomes (1,2). TLR8 is an endosomal receptor and is activated by pathogenic single stranded (ss) RNA (1-3). TLR8 is located on the X chromosome and is expressed mostly in monocytes/macrophages, neutrophils, and myeloid dendritic cells (1-3). Structurally, TLR8 consists of an extracellular domain, a cysteine-rich region, and transmembrane domain, and a Toll/Interleukin-1 receptor homology (TIR) domain (3,4). The extracellular domain contains a N-terminal leucine rich repeat (LRRNT) and a C-terminal LRR (LRRCT) which have 26 LRRs between them, each approximately 20-30 amino acids (aa), and a Z-loop between LRR14 and LRR15 (3). The primary isoform of the human TLR8 is synthesized as a protein 1041 aa in length with a theoretical molecular weight of ~120 kDa (4).
TLR8 is highly similar to TLR7 and both pathways are mediated by the adapter protein MyD88 to signal through IFN regulatory factor 7 (IRF7) and nuclear factor (NF)-kappaB (1-3,5). However, TLR7 recognizes guanosine and GU-rich ssRNA, while TLR8 recognizes uridine and AU-rich sequences (2,5). TLR7/TLR8 agonists, including derivatives of the immunostimulatory imiquimod, have been shown to be a promising cancer therapy capable of providing anticancer signals to antigen presenting cells (APCs), with many agonists being tested in both pre-clinical and clinical trials (6). Similarly, studies suggest that agonists for TLR8, in combination with other individual TLR agonists and antagonists, may also be useful for treating inflammatory allergic diseases, such as allergic rhinitis (7).
References
1. Sakaniwa, K., & Shimizu, T. (2020). Targeting the innate immune receptor TLR8 using small-molecule agents. Acta crystallographica. Section D, Structural biology, 76(Pt 7). https://doi.org/10.1107/S2059798320006518
2. Cervantes, J. L., Weinerman, B., Basole, C., & Salazar, J. C. (2012). TLR8: the forgotten relative revindicated. Cellular & molecular immunology. https://doi.org/10.1038/cmi.2012.38
3. Ohto, U., Tanji, H., & Shimizu, T. (2014). Structure and function of toll-like receptor 8. Microbes and infection. https://doi.org/10.1016/j.micinf.2014.01.007
4. Uniprot (Q9NR97)
5. Jannuzzi, G. P., de Almeida, J., Paulo, L., de Almeida, S. R., & Ferreira, K. S. (2020). Intracellular PRRs Activation in Targeting the Immune Response Against Fungal Infections. Frontiers in cellular and infection microbiology. https://doi.org/10.3389/fcimb.2020.591970
6. Frega, G., Wu, Q., Le Naour, J., Vacchelli, E., Galluzzi, L., Kroemer, G., & Kepp, O. (2020). Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology. https://doi.org/10.1080/2162402X.2020.1796002
7. Golshiri-Isfahani, A., Amizadeh, M., & Arababadi, M. K. (2018). The roles of toll like receptor 3, 7 and 8 in allergic rhinitis pathogenesis. Allergologia et immunopathologia. https://doi.org/10.1016/j.aller.2017.09.026
Limitations
This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are
guaranteed for 1 year from date of receipt.
Customers Who Viewed This Item Also Viewed...
Species: Hu, Mu, Rt
Applications: BA, DB, Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, IP, PLA, WB
Species: Ca, Eq, Hu, Pm, Mu, Pm, Rt
Applications: B/N, CyTOF-ready, DB, ELISA, Flow-IC, Flow, Func, ICC/IF, IHC, IHC-P, IP, In vitro, KD, Simple Western, WB
Species: Ca, Hu, Mu
Applications: BA, B/N, Flow-IC, Flow, ICC/IF, IHC, IHC-P, WB
Species: Bv, Hu, Ma, Mu, Po, Rt
Applications: B/N, ChIP, CyTOF-ready, DB, Dual ISH-IHC, ELISA(Cap), ELISA, Flow-CS, Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, In vitro, KD, KO, PAGE, WB
Species: Ca, Hu, Mu, Rb, Rt
Applications: B/N, DB, ELISA, Flow-CS, Flow, Func, ICC/IF, IP, In vitro, WB
Species: Hu
Applications: BA
Species: Mu
Applications: ELISA
Species: Hu, Mu, Rt
Applications: DB, Flow-CS, Flow-IC, Flow, IHC, IHC-P, WB
Species: Ca, Hu, Mu
Applications: DB, Flow-CS, Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, IP, WB
Species: Hu, Mu, Rt
Applications: Flow, ICC/IF, IHC, IHC-P, WB
Species: Mu
Applications: ELISA
Species: Hu
Applications: Flow-CS, Flow-IC, Flow, IHC, IHC-P, WB
Species: Bv, Hu, Mu, Rt, Xp, Ye, Ze
Applications: BindInhib, B/N, ELISA, Flow, Func-Inh, IHC, In vitro, In vivo
Species: Hu, Mu, Rt
Applications: ICC/IF, IHC, IHC-P, PEP-ELISA, WB
Species: Hu, Rb, Rt
Applications: Flow, IHC, IHC-P, KO, WB
Species: Hu
Applications: BA
Species: Hu
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P
Species: Hu, Mu
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, IP, WB
Species: Hu
Applications: WB
Species: Hu
Applications: CyTOF-ready, ELISA(Cap), ELISA(Det), ELISA(Sta), ICC, ICFlow, Neut, Simple Western, WB
Publications for TLR8 Antibody (NBP2-24917JF646) (0)
There are no publications for TLR8 Antibody (NBP2-24917JF646).
By submitting your publication information earn gift cards and discounts for future purchases.
Reviews for TLR8 Antibody (NBP2-24917JF646) (0)
There are no reviews for TLR8 Antibody (NBP2-24917JF646).
By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
- Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
- Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen
Product General Protocols
Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.
Video Protocols
FAQs for TLR8 Antibody (NBP2-24917JF646) (0)