VEGF Antibody (VG1) [Janelia Fluor® 525] Summary
Immunogen |
Recombinant VEGF 189 protein. |
Specificity |
This VEGF Antibody (VG1) detects the 189, 165 and 121 isoforms of VEGF |
Isotype |
IgG1 Kappa |
Clonality |
Monoclonal |
Host |
Mouse |
Gene |
VEGFA |
Purity |
Protein G purified |
Innovator's Reward |
Test in a species/application not listed above to receive a full credit towards a future purchase. |
Applications/Dilutions
Dilutions |
- CyTOF-ready
- ELISA
- Flow Cytometry
- Immunocytochemistry/ Immunofluorescence
- Immunohistochemistry
- Immunohistochemistry-Frozen
- Immunohistochemistry-Paraffin
- Simple Western
- Western Blot
|
Application Notes |
Optimal dilution of this antibody should be experimentally determined. |
Reactivity Notes
Use in Rat reported in scientific literature (PMID:34423682). Use in Porcine reported in scientific literature (PMID:32132871).
Packaging, Storage & Formulations
Storage |
Store at 4C in the dark. |
Buffer |
50mM Sodium Borate |
Preservative |
0.05% Sodium Azide |
Purity |
Protein G purified |
Notes
Sold under license from the Howard Hughes Medical Institute, Janelia Research Campus.
Alternate Names for VEGF Antibody (VG1) [Janelia Fluor® 525]
Background
Vascular endothelial growth factor (VEGF), also called VEGF-A and vascular permeability factor (VPF), is a secreted homodimeric glycoprotein belonging to the VEGF family with a role in stimulating angiogenesis and vasculogenesis (1,2). More specifically, VEGF-A secretion from most cell types contributes to promoting endothelial cell proliferation and migration, inhibiting apoptosis, increasing vascular permeability, and wound healing (1). The VEGF family consists of several members including VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F, and placenta growth factor (PLGF) (1-4). As a result of alternative splicing of the eight exon VEGFA gene, there are several VEGF-A protein isoforms of 121, 145, 165, 183, 189, and 206 amino acids (aa) in length, with VEGF121 and VEGF165 being the two most expressed isoforms (1,5). Full length VEGF-A monomer has a 26 aa signal sequence plus a 206 aa (VEGF206) sequence, with a theoretic molecular weight (MW) of 27 kDa, containing VEGF receptor 1 (VEGFR1) and VEGR2 binding sites and heparin-binding domains (1-3,5,6). VEGF121 lacks heparin affinity and binds the receptor tyrosine kinases (RTKs) VEGFR1 and VEGFR2, whereas VEGF165 has moderate affinity for heparin and, in addition to being a ligand for VEGFR1 and VEGFR2, can also bind the co-receptors neuropilin 1 (NRP1) and NRP2 (1,5). Hypoxia and hypoxia-related genes such as HIF-1, EGF, and PDGF are major regulators angiogenesis and VEGF expression (1,3). VEGF signaling initiated by ligand binding to its receptors results in activation of different pathways including PI3K and MAPK and ultimately guides endothelial cell proliferation, migration, and survival (1,3). While VEGF plays an important role in promoting normal angiogenesis and blood vessel formation, its expression is often upregulated in tumors and other angiogenesis-related pathologies like osteroarthritis (OA) (1-5,7). Given its function, VEGF and its receptors have become a therapeutic target for treating cancer and blocking angiogenesis (4,5,7). A recombinant humanized monoclonal anti-VEGFA antibody called bevacizumab (Avastin) was first approved by the FDA in 2004 for the treatment of a number of cancers (1-3,5). Cancer patients may experience resistance to anti-VEGF antibodies and, as such, clinical studies are exploring combination treatment options with chemotherapies and immune-checkpoint inhibitors (3,5).
References
1. Melincovici CS, Bosca AB, susman S, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-467.
2. Shaik F, Cuthbert GA, Homer-Vanniasinkam S, Muench SP, Ponnambalam S, Harrison MA. Structural Basis for Vascular Endothelial Growth Factor Receptor Activation and Implications for Disease Therapy. Biomolecules. 2020;10(12):1673. https://doi.org/10.3390/biom10121673
3. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-1264. https://doi.org/10.1016/j.cell.2019.01.021
4. Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem. 2014;156(1):1-10. https://doi.org/10.1093/jb/mvu031
5. Itatani Y, Kawada K, Yamamoto T, Sakai Y. Resistance to Anti-Angiogenic Therapy in Cancer-Alterations to Anti-VEGF Pathway. Int J Mol Sci. 2018;19(4):1232. Published 2018 Apr 18. doi:10.3390/ijms19041232
6. Uniprot (P15692)
7. Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im HJ. Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J Bone Miner Res. 2016;31(5):911-924. https://doi.org/10.1002/jbmr.2828
Limitations
This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are
guaranteed for 1 year from date of receipt.
Customers Who Viewed This Item Also Viewed...
Species: Hu
Applications: BA
Species: Hu
Applications: Block, CyTOF-ready, Flow, IHC, WB
Species: Hu
Applications: BA
Species: Hu
Applications: Block, CyTOF-ready, Flow, IHC, WB
Species: Mu
Applications: CyTOF-ready, Dual ISH-IHC, Flow, IHC, Neut, WB
Species: Bv, Ca, Fe, Ma, Hu, Pm, Mu, Po, Pm, Rb, Rt, Sh, Xp
Applications: ChIP, ChIP, ELISA, Flow, GS, IA, IB, ICC/IF, IHC-FrFl, IHC, IHC-Fr, IHC-P, IP, In vitro, KD, KO, LA, PLA, Simple Western, TCS, WB
Species: Mu
Applications: ELISA
Species: Hu
Applications: BA
Species: Hu
Applications: BA
Species: Hu, Mu, Rt
Applications: CyTOF-ready, Flow, ICC, IHC, Simple Western, WB
Species: Hu
Applications: CyTOF-ready, Dual ISH-IHC, ELISA(Cap), ELISA(Det), ELISA(Sta), Flow, ICC, IHC, IP, Simple Western, WB
Species: Hu, Mu, Rt
Applications: CyTOF-ready, IHC, ICFlow, Simple Western, WB
Species: Hu
Applications: ChIP, ELISA, ICC/IF, WB
Species: Rt
Applications: IHC, WB
Species: Hu
Applications: ELISA
Species: Hu, Pm, Mu, Rt
Applications: ELISA, Flow, ICC/IF, IHC, IHC-P, WB
Species: Hu, Mu, Rt
Applications: IHC, KO, WB
Species: Hu
Applications: BA
Publications for VEGF Antibody (NB100-664JF525) (0)
There are no publications for VEGF Antibody (NB100-664JF525).
By submitting your publication information earn gift cards and discounts for future purchases.
Reviews for VEGF Antibody (NB100-664JF525) (0)
There are no reviews for VEGF Antibody (NB100-664JF525).
By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
- Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
- Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen
Product General Protocols
Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.
Video Protocols
FAQs for VEGF Antibody (NB100-664JF525). (Showing 1 - 1 of 1 FAQ).
-
Why is the molecular weight of VEGF different from the similar antibody, for some companies the the molecular weight is 40KD)? ..show answer..
- I can't comment on another company's antibody because I don't have any information about their products. I can tell you that VEGF is expressed in a variety of isoforms and is subject to various post-translational modifications that influence its apparent molecular weight in an SDS-PAGE gel compared to the theoretical molecular weight.