EGLN1/PHD2 Overexpression Lysate Summary
Description |
EGLN1/PHD2 Transient Overexpression Lysate Expression Host: HEK293T
Plasmid: RC215158
Accession#: NM_022051
Protein Tag: C-MYC/DDK
You will receive 1 vial of lysate (100ug), 1 vial of empty vector negative control (100ug), and 1 vial of 2xSDS sample buffer (250ul). Each vial of cell lysate contains 100ug of total protein (at 1 mg/ml). The 2xSDS Sample Buffer consists of 4% SDS, 125mM Tris-HCl pH6.8, 10% Glycerol, 0.002% Bromophenol blue, 100mM DTT. |
Gene |
EGLN1 |
Applications/Dilutions
Dilutions |
|
Application Notes |
This product is intended for use as a positive control in Western Blot. Overexpression of the target protein was confirmed using an antibody to DDK (FLAG) epitope tag ( NBP1-71705) present on the protein construct. Each vial of cell lysate contains 100ug of total protein which should be sufficient for 20-50 reactions. Depending on over-expression level, antibody affinity and detection system, some lysates can go as low as 0.1 ug per load. We recommend starting with 5ug of cell lysate. Add an equal amount of cell lysate and 2X SDS Sample buffer and boil the SDS samples for 10 minutes before loading. |
Theoretical MW |
46 kDa. Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors. |
Packaging, Storage & Formulations
Storage |
Store at -80C. Avoid freeze-thaw cycles. |
Buffer |
RIPA buffer |
Lysate Details for Array
Notes
HEK293T cells in 10-cm dishes were transiently transfected with a non-lipid polymer transfection reagent specially designed and manufactured for large volume DNA transfection. Transfected cells were cultured for 48hrs before collection. The cells were lysed in modified RIPA buffer (25mM Tris-HCl pH7.6, 150mM NaCl, 1% NP-40, 1mM EDTA, 1xProteinase inhibitor cocktail mix, 1mM PMSF and 1mM Na3VO4, and then centrifuged to clarify the lysate. Protein concentration was measured by BCA protein assay kit.
Alternate Names for EGLN1/PHD2 Overexpression Lysate
Background
PHD2 (Prolyl Hydroxylase Domain-containing protein 2) belongs to the Prolyl-4-hydroxylase domain (PHD) family of proteins and is encoded by the Egl-9 Family Hypoxia Inducible Factor 1 (EGLN1) gene (1). Human EGLN1/PHD2 is a ubiquitously expressed enzyme that is 426 amino acids (aa) long with a theoretical molecular weight of ~46 kDa. Structurally PHD2 contains a nuclear export signal (NES, aa 6-20), an N-terminal MYND zinc finger domain (aa 21-58), and a C-terminal catalytic domain (aa 291-392) (2, 3). Functionally, PHD2 serves as an oxygen sensor and is responsible for post-translational modification of Hypoxia-inducible factor alpha (HIF-1alpha), a component of a transcriptional complex involved in oxygen homeostasis (1-3). During normoxia, PHD2 is responsible for oxygen-dependent hydroxylation of HIF-1alpha proline residue 402, 564, or both (3). The hydroxylation event promotes the binding of von Hippel-Lindau protein (VHL) and targets HIF1-alpha for ubiquitination and degradation (4, 5).
EGLN1/PHD2 has been implicated in several critical processes including erythropoiesis, angiogenesis, and metabolism as well as various pathologies such as cancer (2, 5, 6). Studies in mice have found that somatic deletion of PHD2 resulted in higher vascular endothelial growth factor A (VEGF-A) levels, increased blood vessel formation, and more erythropoietin (EPO), leading to severe polycythemia or erythrocytosis (high red blood cell (RBC) volume) (6). Another study revealed that specific point mutations in EGLN1/PHD2 led to elevated EPO and RBC mass associated with hemorrhages and strokes (6). Accordingly, given the known role of PHD2 in inhibition of EPO production, PHD2 inhibitors are being studied as a potential therapeutic for anemia (6). Additionally, dysregulation in EGLN1, and specifically the PHD2-VHL-HIF-1alpha pathway, has been associated with the development of pheochromocytomas (PCC) and sympathetic paragangliomas (PGL), which are rare neuroendocrine tumors (2). Besides pathological features, EGLN1/PHD2 may also be important for high altitude adaptation as two coding sequence variants in PHD2 are prevalent in the Tibetan population but is very rare in people at lower altitudes (2).
Alternate names for EGLN1/PHD2 include HIF Prolyl Hydroxylase 2, PH2, Prolyl hydroxylase domain containing protein 2, HIF2PH2, HIF-Prolyl hydroxylase 2, egl nine homolog 1, and C1orf12.
References
1. Amorim-Pires, D., Peixoto, J., & Lima, J. (2016). Hypoxia Pathway Mutations in Pheochromocytomas and Paragangliomas. Cytogenetic and genome research. https://doi.org/10.1159/000457479
2. Gardie, B., Percy, M. J., Hoogewijs, D., Chowdhury, R., Bento, C., Arsenault, P. R., Richard, S., Almeida, H., Ewing, J., Lambert, F., McMullin, M. F., Schofield, C. J., & Lee, F. S. (2014). The role of PHD2 mutations in the pathogenesis of erythrocytosis. Hypoxia (Auckland, N.Z.). https://doi.org/10.2147/HP.S54455
3. Minervini, G., Quaglia, F., & Tosatto, S. C. (2015). Insights into the proline hydroxylase (PHD) family, molecular evolution and its impact on human health. Biochimie. https://doi.org/10.1016/j.biochi.2015.07.009
4. Semenza G. L. (2007). Hypoxia-inducible factor 1 (HIF-1) pathway. Science's STKE : signal transduction knowledge environment. https://doi.org/10.1126/stke.4072007cm8
5. Chan, D. A., & Giaccia, A. J. (2010). PHD2 in tumour angiogenesis. British journal of cancer. https://doi.org/10.1038/sj.bjc.6605682
6. Meneses, A. M., & Wielockx, B. (2016). PHD2: from hypoxia regulation to disease progression. Hypoxia (Auckland, N.Z.). https://doi.org/10.2147/HP.S53576
Limitations
This product is for research use only and is not approved for use in humans or in clinical diagnosis. Lysates are
guaranteed for 6 months from date of receipt.
Customers Who Viewed This Item Also Viewed...
Species: Bv, Ca, Fe, Ma, Hu, Pm, Mu, Po, Pm, Rb, Rt, Sh, Xp
Applications: ChIP, ChIP, ELISA, Flow, GS, IA, IB, ICC/IF, IHC-FrFl, IHC, IHC-Fr, IHC-P, IP, In vitro, KD, KO, LA, PLA, Simple Western, TCS, WB
Species: Hu, Mu, Rt
Applications: ChIP, EM, ICC/IF, IHC, IHC-P, IP, KD, MS, WB
Species: Hu
Applications: IP, WB
Species: Hu, Mu, Rt
Applications: IHC, IHC-P, WB
Species: Fi, Ha, Hu, Mu, Pm, Rb, Rt, Re, Sh
Applications: ChIP, Dual ISH-IHC, ELISA, Flow, GS, IB, ICC/IF, IHC, IHC-Fr, IHC-P, IP, In vitro, KD, KO, PAGE, Simple Western, WB
Species: Hu
Applications: ELISA
Species: Mu
Applications: ELISA
Species: Hu, Mu, Rt
Applications: ICC/IF, IP, WB
Species: Hu, Mu, Rt
Applications: EM, ICC/IF, IHC, IHC-Fr, IHC-P, IP, KD, KO, WB
Species: Bv, Hu, Mu, Po, Rt
Applications: ELISA, ICC/IF, IHC, IHC-Fr, IHC-P, WB
Species: Bv, Ma, Hu, Mu, Pm, Rt, Sh
Applications: ChIP, CHIP-SEQ, GS, IB, ICC/IF, IHC, IHC-P, IP, WB
Species: Hu
Applications: Flow, ICC/IF, IHC, IHC-P
Species: Hu
Applications: ELISA
Species: Hu, Mu, Pl, Rt
Applications: ChIP, Dual ISH-IHC, ELISA, Flow, GS, IB, ICC/IF, IHC, IHC-Fr, IHC-P, IP, MiAr, PLA, Simple Western, WB
Species: Hu, Rt
Applications: IHC, IHC-P, WB
Species: Hu
Applications: IHC, IHC-P, WB
Species: Hu
Applications: ELISA, WB
Species: Hu, Mu, Rt
Applications: ICC/IF, IHC, IHC-P, KO, WB
Publications for EGLN1/PHD2 Lysate (NBL1-10153) (0)
There are no publications for EGLN1/PHD2 Lysate (NBL1-10153).
By submitting your publication information earn gift cards and discounts for future purchases.
Reviews for EGLN1/PHD2 Lysate (NBL1-10153) (0)
There are no reviews for EGLN1/PHD2 Lysate (NBL1-10153).
By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
- Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
- Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen
Product General Protocols
Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.
Video Protocols
FAQs for EGLN1/PHD2 Lysate (NBL1-10153) (0)
Additional EGLN1/PHD2 Products
Research Areas for EGLN1/PHD2 Lysate (NBL1-10153)
Find related products by research area.
|
Blogs on EGLN1/PHD2