Novus Biologicals products are now on bio-techne.com

PINK1 Antibody (8E10.1D6) - BSA Free

Images

 
Genetic Strategies: Western Blot: PINK1 Antibody (8E10.1D6) [NBP2-36488] - PINK1 is responsible for CMR-induced cytoplasmic vacuolation.The effect of siRNA-mediated knockdown of PINK1 on CMR-induced changes in ...read more
Immunohistochemistry-Paraffin: PINK1 Antibody (8E10.1D6) [NBP2-36488] - Analysis of FFPE tissue section of human hepatocellular carcinoma using PINK1 antibody (clone 8E10.1D6) at 5 ug/ml concentration. The cancer cells ...read more
Biological Strategies: Immunocytochemistry/ Immunofluorescence: PINK1 Antibody (8E10.1D6) [NBP2-36488] - HeLa cells were treated with valinomycin (1 uM, 24h) prior to being fixed in 10% buffered formalin for 10 ...read more
Biological Strategies: Western Blot: PINK1 Antibody (8E10.1D6) [NBP2-36488] - Whole cell protein from HeLa cells treated with or without valinomycin (1 uM, 24h) as indicated was separated by SDS-PAGE on a 7.5% ...read more
Western Blot: PINK1 Antibody (8E10.1D6) [NBP2-36488] - Analysis of (A) Partial Recombinant Human PINK-1 protein with estimated molecular weight at 13kDa and (B) Human Liver lysate using PINK1 antibody clone 8E10.1D6 at ...read more
Western Blot: PINK1 Antibody (8E10.1D6) - BSA Free [NBP2-36488] - Active protein synthesis is required for CMR-induced cytoplasmic vacuolation. Analysis of CMR-induced cytoplasmic vacuolation in MDA-MB-231 & PC-3 cells ...read more
Western Blot: PINK1 Antibody (8E10.1D6) - BSA Free [NBP2-36488] - PINK1 is responsible for CMR-induced cytoplasmic vacuolation. (a) Analysis of the effect of ectopic expression of Myc-PINK1 on CMR-induced expression ...read more
Western Blot: PINK1 Antibody (8E10.1D6) - BSA Free [NBP2-36488] - Regulation of the mitophagic marker PINK1 in WT & TLR4 KO mice. a PINK1 immunoreactivity was observed in the spinal dorsal horn of CCI mice. PINK1 IR ...read more

Product Details

Summary
Reactivity Hu, Mu, Rt, PmSpecies Glossary
Applications WB, ICC/IF, IHC, PAGE, KD
Clone
8E10.1D6
Clonality
Monoclonal
Host
Mouse
Conjugate
Unconjugated
Format
BSA Free
Concentration
1.0 mg/ml

Order Details

Novus Biologicals is part of Bio-Techne

Shop this product on bio-techne.com

PINK1 Antibody (8E10.1D6) - BSA Free Summary

Immunogen
PINK1 antibody was developed using a synthetic peptide made to the human PINK1 protein sequence (between residues 100-250). [Swiss-Prot: Q9BXM7]
Localization
Mitochondrion outer membrane, Cytoplasm
Specificity
Human PINK1 protein sequence (between residues 100-250), only reactive to isoform 1.
Predicted Species
Primate (100%). Backed by our 100% Guarantee.
Isotype
IgG2b Kappa
Clonality
Monoclonal
Host
Mouse
Gene
PINK1
Purity
Protein G purified
Innovator's Reward
Test in a species/application not listed above to receive a full credit towards a future purchase.

Applications/Dilutions

Dilutions
  • Immunocytochemistry/ Immunofluorescence 20-50 ug/ml
  • Immunohistochemistry 5 ug/ml
  • Immunohistochemistry-Paraffin 5 ug/ml
  • Knockdown Validated
  • SDS-Page reported in scientific literature (PMID 27553674)
  • Western Blot 2-4 ug/ml
Application Notes
Unprocessed PINK1 is 63 kDa which undergoes proteolytic processing to generate 55 kDa and 42 kDa cleaved forms, and bands at the mentioned positions may be expected in Western blot application.
Theoretical MW
62.7 kDa.
Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.
Control
PINK1 293T Cell Transient Overexpression Lysate
PINK1 Overexpression Lysate
Publications
Read Publications using
NBP2-36488 in the following applications:

Reactivity Notes

Mouse reactivity reported in scientific literature (PMID: 29486776). Use in Rat reported in scientific literature (PMID:32365512).

Packaging, Storage & Formulations

Storage
Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles.
Buffer
PBS
Preservative
0.05% Sodium Azide
Concentration
1.0 mg/ml
Purity
Protein G purified

Alternate Names for PINK1 Antibody (8E10.1D6) - BSA Free

  • BRPK
  • EC 2.7.11.1
  • FLJ27236
  • PARK6
  • Parkinson disease (autosomal recessive) 6
  • PINK1 monoclonal
  • PINK1
  • protein kinase BRPK
  • PTEN Induced Kinase 1
  • PTEN induced putative kinase 1
  • PTEN-induced putative kinase protein 1
  • serine/threonine-protein kinase PINK1, mitochondrial

Background

Phosphatase and Tensin Homolog (PTEN) is a tumor suppressor which acts as an antagonist to phosphatidylinositol 3-kinase (PI3K) signaling. PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP3) phosphatase, opposing PI3K activity by reducing availability of PIP3 to proliferating cells. Loss of PTEN function leads to elevated PIP3 and increased activation of PI3K/AKT signaling in many types of cancer.

PINK1 (PTEN induced putative kinase 1) protein contains a N-terminal mitochondrial targeting sequence, putative transmembrane helix, linker region, serine (Ser65)/threonine (Thr257) kinase domain and C-terminal segment. PINK1 is translated in the cytosol, then translocated to the outer mitochondrial membrane where it is rapidly cleaved and degraded as a part of normal mitochondrial function. In damaged (depolarized) mitochondria, PINK1 becomes stabilized and accumulates, resulting in the subsequent phosphorylation of numerous proteins on the mitochondrial surface.

When PINK1 is imported into the cell, mitochondrial processing peptidase, presenilin-associated rhomboid-like protease and AFG3L2 cleave PINK1 and tag it for the ubiquitin-proteasome pathway, keeping low PINK1 protein expression at basal conditions (1,2). Accumulation of PINK1 in mitochondria indicate damage. PINK1 maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, and is involved in the clearance of damaged mitochondria via selective autophagy (mitophagy) (3). PINK1 has a theoretical molecular weight of 63 kDa and undergoes proteolytic processing to generate at least two cleaved forms (55 kDa and 42 kDa).

Ultimately PARK2 (E3 Ubiquitin Ligase Parkin) is recruited to the damaged mitochondria where it is activated by 1) PINK-mediated phosphorylation of PARK2 at serine 65, and 2) PARK2 interaction with phosphorylated ubiquitin (also phosphorylated by PINK1 on serine 65) (4,5). There is a strong interplay between Parkin and PINK1, where loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by Parkin (2,4,5). Mutations in either Parkin or PINK1 alter mitochondrial turnover, resulting in the accumulation of defective mitochondria and, ultimately, neurodegeneration in Parkinson's disease. Mutations in the PINK1 gene located within the PARK6 locus on chromosome 1p35-p36 have been identified in patients with early-onset Parkinson's disease (6).

References

1.Rasool, S., Soya, N., Truong, L., Croteau, N., Lukacs, G. L., & Trempe, J. F. (2018). PINK1 autophosphorylation is required for ubiquitin recognition. EMBO Rep, 19(4). doi:10.15252/embr.201744981

2.Shiba-Fukushima, K., Arano, T., Matsumoto, G., Inoshita, T., Yoshida, S., Ishihama, Y., . . . Imai, Y. (2014). Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet, 10(12), e1004861. doi:10.1371/journal.pgen.1004861

3.Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L., Kim, J., . . . Przedborski, S. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A, 107(1), 378-383. doi:10.1073/pnas.0911187107

4.McWilliams, T. G., Barini, E., Pohjolan-Pirhonen, R., Brooks, S. P., Singh, F., Burel, S., . . . Muqit, M. M. K. (2018). Phosphorylation of Parkin at serine 65 is essential for its activation in vivo. Open Biol, 8(11). doi:10.1098/rsob.180108

5.Exner, N., Treske, B., Paquet, D., Holmstrom, K., Schiesling, C., Gispert, S., . . . Haass, C. (2007). Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci, 27(45), 12413-12418. doi:10.1523/jneurosci.0719-07.2007

6.Valente, E. M., Bentivoglio, A. R., Dixon, P. H., Ferraris, A., Ialongo, T., Frontali, M., . . . Wood, N. W. (2001). Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet, 68(4), 895-900. doi:10.1086/319522

Limitations

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Customers Who Viewed This Item Also Viewed...

NB300-270
Species: Ch, Hu, Mu, Rt
Applications: Flow, ICC/IF, IHC, IHC-P, IP, In vitro, Simple Western, WB
NBP2-15365
Species: Hu, Mu, Rt
Applications: ICC/IF, IHC, IHC-Fr, IHC-P, S-ELISA, WB
NB300-268
Species: Bv, Ce, Hu, I, Mu, Pl
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, IP, KO, WB
AF1438
Species: Hu
Applications: IHC, WB
NB110-41486
Species: Hu, Mu
Applications: IHC, Simple Western, WB
AF1458
Species: Hu, Mu, Rt
Applications: ICC, Simple Western, WB
NB600-1160
Species: Bv, Ca, Hu, Mu, Po, Rt, Ze
Applications: Flow, ICC/IF, IHC, IHC-Fr, IHC-P, Simple Western, WB
AF847
Species: Hu, Mu, Rt
Applications: CyTOF-ready, IHC, ICFlow, KO, Simple Western, WB
NB110-55288
Species: Fi, Hu, Mu, Pm, Rt
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-P, IP, Simple Western, WB
NBP2-21037
Species: Hu
Applications: IHC, IHC-P, WB
NBP2-31361
Species: Hu
Applications: IHC, IHC-P, WB
NBP1-81988
Species: Hu
Applications: IHC, IHC-P
H00007402-M01
Species: Hu
Applications: ELISA, ICC/IF, WB
NBP1-76651
Species: Hu, Mu, Rt
Applications: ELISA, ICC/IF, IHC, IHC-P, WB
NBP2-02477
Species: Ca, Hu, Pm, Mu, Rt
Applications: Flow, ICC/IF, IHC, IHC-P, IP, WB
NBP2-16148
Species: Hu, Mu
Applications: ICC/IF, IHC, IHC-P, WB
NBP2-25162
Species: Bv, Eq, Hu, Mu, Po, Rt
Applications: ICC/IF, IHC, PLA, WB
MAB7410
Species: Hu
Applications: ICC, KO, Simple Western, WB
H00009927-M03
Species: Hu, Rt
Applications: ELISA, IHC, IHC-P, RNAi, WB
NBP2-36488
Species: Hu, Mu, Rt, Pm
Applications: WB, ICC/IF, IHC, PAGE, KD

Publications for PINK1 Antibody (NBP2-36488)(10)

We have publications tested in 3 confirmed species: Human, Mouse, Rat.

We have publications tested in 3 applications: ICC/IF, IHC-P, WB.


Filter By Application
ICC/IF
(1)
IHC-P
(1)
WB
(6)
All Applications
Filter By Species
Human
(4)
Mouse
(2)
Rat
(1)
All Species
Showing Publications 1 - 10 of 10.
Publications using NBP2-36488 Applications Species
Roberta Tufi, Emily H Clark, Tamaki Hoshikawa, Christiana Tsagkaraki, Jack Stanley, Kunitoshi Takeda, James M Staddon, Thomas Briston High-content phenotypic screen to identify small molecule enhancers of Parkin-dependent ubiquitination and mitophagy. SLAS discovery : advancing life sciences R & D 2023-04-25 [PMID: 36608804]
Di Rienzo M, Romagnoli A, Ciccosanti F Et al. AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability Autophagy 2021-11-19 [PMID: 34798798] (ICC/IF, WB, Human) ICC/IF, WB Human
Meng Q, Zaharieva EK, Sasatani M, Kobayashi J. Possible relationship between mitochondrial changes and oxidative stress under low dose-rate irradiation Redox Report 2021-08-26 [PMID: 34435550]
Shin N, Shin HJ, Yi Y et al. p66shc siRNA-Encapsulated PLGA Nanoparticles Ameliorate Neuropathic Pain Following Spinal Nerve Ligation Polymers (Basel) 2020-04-29 [PMID: 32365512] (WB, Rat) WB Rat
Han H, Chou CC, Li R et al. Chalcomoracin is a potent anticancer agent acting through triggering Oxidative stress via a mitophagy- and paraptosis-dependent mechanism Sci Rep 2018-06-22 [PMID: 29934599] (WB, Human) WB Human
Piao Y, Gwon DH, Kang DW et al. TLR4-mediated autophagic impairment contributes to neuropathic pain in chronic constriction injury mice. Mol Brain. 2018-02-27 [PMID: 29486776] (IHC-P, Mouse)

Details:
Mouse monoclonal PINK1 antibody from Novus was used to examine differences in expression of PINK 1 IR cells in the ipsilateral and contralateral side in WT mice vs TLR4 KO mice
IHC-P Mouse
Kim MJ, Hwang JW, Yun CK, Lee Y. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep. 2018-02-20 [PMID: 29463809] (WB, Human) WB Human
Tan WJT, Song L, Li Y et al. Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear Antioxid Redox Signal. 2017-09-09 [PMID: 28135838] (WB, Mouse) WB Mouse
Juyeon K, Park JH, Park YS, Koh HC. PPAR-gamma activation attenuates deltamethrin-induced apoptosis by regulating cytosolic PINK1 and inhibiting mitochondrial dysfunction. Toxicol. Lett. 2016-08-20 [PMID: 27553674]
Greene A W, Grenier K et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012-01-04 [PMID: 22354088] (WB, Human) WB Human

Reviews for PINK1 Antibody (NBP2-36488) (0)

There are no reviews for PINK1 Antibody (NBP2-36488). By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
  • Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
  • Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen

Product General Protocols

Video Protocols

WB Video Protocol
ICC/IF Video Protocol

FAQs for PINK1 Antibody (NBP2-36488). (Showing 1 - of FAQs).

    Control Lysate(s)

    Secondary Antibodies

     

    Isotype Controls

    Additional PINK1 Products

    Research Areas for PINK1 Antibody (NBP2-36488)

    Find related products by research area.

    Blogs on PINK1. Showing 1-10 of 14 blog posts - Show all blog posts.

    Understanding Mitophagy Mechanisms: Canonical PINK1/Parkin, LC3-Dependent Piecemeal, and LC3-Independent Mitochondrial Derived Vesicles
    By Christina Towers, PhD What is Mitophagy?The selective degradation of mitochondria via double membrane autophagosome vesicles is called mitophagy. Damaged mitochondria can generate harmful amounts of reactive ox...  Read full blog post.

    New Players in the Mitophagy Game
    By Christina Towers, PhD Mitochondrial turn over via the lysosome, otherwise known as mitophagy, involves engulfment of mitochondria into double membrane autophagosomes and subsequent fusion with lysosomes. Much is al...  Read full blog post.

    Losing memory: Toxicity from mutant APP and amyloid beta explain the hippocampal neuronal damage in Alzheimer's disease
     By Jamshed Arslan Pharm.D.  Alzheimer's disease (AD) is an irreversible brain disorder that destroys memory and thinking skills. The telltale signs of AD brains are extracellular deposits of amy...  Read full blog post.

    There's an autophagy for that!
    By Christina Towers, PhDA critical mechanism that cells use to generate nutrients and fuel metabolism is through a process called autophagy.  This process is complex and involves over 20 different proteins, most of which are highly conserved acro...  Read full blog post.

    The role of Parkin and autophagy in retinal pigment epithelial cell (RPE) degradation
    The root of Parkinson’s disease (PD) points to a poorly regulated electron transport chain leading to mitochondrial damage, where many proteins need to work cohesively to ensure proper function.  The two key players of this pathway are PINK1, ...  Read full blog post.

    The identification of dopaminergic neurons using Tyrosine Hydroxylase in Parkinson's research and LRRK2
    Tyrosine hydroxylase (TH) is a crucial enzyme involved in the biosynthesis of dopamine, norepinephrine and epinephrine in the brain.  Specifically, TH catalyzes the conversion of l-tyrosine to l-dihydroxyphenylalanine (l-dopa).  The importance of t...  Read full blog post.

    Parkin - Role in Mitochondrial Quality Control and Parkinson's Disease
    Parkin/PARK2 is a cytosolic enzyme which gets recruited to cellular mitochondria damaged through depolarization, ROS or unfolded proteins accumulation, and exert protective effects by inducing mitophagy (mitochondrial autophagy). Parkin induces mit...  Read full blog post.

    PINK1 - performing mitochondrial quality control and protecting against Parkinson’s disease
    PTEN-induced putative kinase 1 (PINK1) is a serine/threonine kinase with important functions in mitochondrial quality control. Together with the Parkin protein, PINK1 is able to regulate the selective degradation of damaged mitochondria through aut...  Read full blog post.

    PINK1: All work and no fun
    The protein PINK1 is a mitochondrial-located serine/threonine kinase (PTK) that maintains organelle function and integrity. It not only protects organelles from cellular stress, but it also uses the selective auto-phagocytosis process for cleaning and...  Read full blog post.

    PINK1 and its role in Parkinson's disease
    PINK1 (PTEN induced putative kinase 1) is a mitochondrial serine/threonine kinase which maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, potentially by phosphorylating mitochondr...  Read full blog post.

    Showing 1-10 of 14 blog posts - Show all blog posts.
    Read our latest blog and use the new citation tool on bio-techne.com

    Customers Who Bought This Also Bought

    Contact Information

    Product PDFs

    Calculators

    Concentration Calculator

    The concentration calculator allows you to quickly calculate the volume, mass or concentration of your vial. Simply enter your mass, volume, or concentration values for your reagent and the calculator will determine the rest.

    =
    ÷

    Review this Product

    Be the first to review our PINK1 Antibody (8E10.1D6) - BSA Free and receive a gift card or discount.

    Bioinformatics

    Gene Symbol PINK1
    Entrez
    OMIM
    Uniprot